In this paper we revisit the Restricted Additive Schwarz method for solving discretized Helmholtz problems, using impedance boundary conditions on subdomains (sometimes called ORAS). We present this method in its variational form and show that it can be seen as a finite element discretization of a parallel overlapping domain decomposition method defined at the PDE level. In a fourthcoming paper, the authors have proved certain contractive properties of the error propagation operator for this method at the PDE level, under certain geometrical assumptions. We illustrate computationally that these properties are also enjoyed by its finite element approximation, i.e., the ORAS method.


翻译:在本文中,我们重新审视了利用分域(有时称为ORAS)的阻力边界条件解决分散散散散散散散散散散的Helmholtz 问题的方法(有时称为ORAS),我们以其变异形式提出这种方法,并表明这种方法可被视为PDE一级界定的平行重叠域分解方法的有限分解元素。在第四期论文中,作者根据某些几何假设,证明PDE一级错误传播操作员在这种方法上具有某些合同性。我们用计算方法说明,这些特性也是其定数元素近似值(即ORAS方法)所享受的。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员