CI/CD pipelines are widely used in software development, yet their environmental impact, particularly carbon and water footprints (CWF), remains largely unknown to developers, as CI service providers typically do not disclose such information. With the growing environmental impact of cloud computing, understanding the CWF of CI/CD services has become increasingly important. This work investigates the CWF of using GitHub Actions, focusing on open-source repositories where usage is free and unlimited for standard runners. We build upon a methodology from the Cloud Carbon Footprint framework and we use the largest dataset of workflow runs reported in the literature to date, comprising over 2.2 million workflow runs from more than 18,000 repositories. Our analysis reveals that the GitHub Actions ecosystem results in a substantial CWF. Our estimates for the carbon footprint in 2024 range from 150.5 MTCO2e in the most optimistic scenario to 994.9 MTCO2e in the most pessimistic scenario, while the water footprint ranges from 1,989.6 to 37,664.5 kiloliters. The most likely scenario estimates are 456.9 MTCO2e for carbon footprint and 5,738.2 kiloliters for water footprint. To provide perspective, the carbon footprint in the most likely scenario is equivalent to the carbon captured by 7,615 urban trees in a year, and the water footprint is comparable to the water consumed by an average American family over 5,053 years. We explore strategies to mitigate this impact, primarily by reducing wasted computational resources. Key recommendations include deploying runners in regions whose energy production has a low environmental impact such as France and the United Kingdom, implementing stricter deactivation policies for scheduled runs and aligning their execution with periods when the regional energy mix is more environmentally favorable, and reducing the size of repositories.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
15+阅读 · 2023年4月24日
Arxiv
15+阅读 · 2022年1月24日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
21+阅读 · 2023年7月12日
Arxiv
15+阅读 · 2023年4月24日
Arxiv
15+阅读 · 2022年1月24日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员