We consider the navigation of mobile robots in crowded environments, for which onboard sensing of the crowd is typically limited by occlusions. We address the problem of inferring the human occupancy in the space around the robot, in blind spots, beyond the range of its sensing capabilities. This problem is rather unexplored in spite of the important impact it has on the robot crowd navigation efficiency and safety, which requires the estimation and the prediction of the crowd state around it. In this work, we propose the first solution to sample predictions of possible human presence based on the state of a fewer set of sensed people around the robot as well as previous observations of the crowd activity.

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

Humans build 3D understandings of the world through active object exploration, using jointly their senses of vision and touch. However, in 3D shape reconstruction, most recent progress has relied on static datasets of limited sensory data such as RGB images, depth maps or haptic readings, leaving the active exploration of the shape largely unexplored. Inactive touch sensing for 3D reconstruction, the goal is to actively select the tactile readings that maximize the improvement in shape reconstruction accuracy. However, the development of deep learning-based active touch models is largely limited by the lack of frameworks for shape exploration. In this paper, we focus on this problem and introduce a system composed of: 1) a haptic simulator leveraging high spatial resolution vision-based tactile sensors for active touching of 3D objects; 2)a mesh-based 3D shape reconstruction model that relies on tactile or visuotactile signals; and 3) a set of data-driven solutions with either tactile or visuotactile priors to guide the shape exploration. Our framework enables the development of the first fully data-driven solutions to active touch on top of learned models for object understanding. Our experiments show the benefits of such solutions in the task of 3D shape understanding where our models consistently outperform natural baselines. We provide our framework as a tool to foster future research in this direction.

0
0
下载
预览

The horizon line is a valuable feature in the maritime environment as it has a high persistence when compared to other features (e.g., shore corners, waves). It is used in several applications, especially in maritime surveillance. The task of horizon detection may be easy for humans, but it is hard on computers due to the high change of color and texture on maritime scenes. Moreover, the computational complexity is an important constraint to take into account while developing the algorithm. In this paper, we propose a new method that we expect to enhance the state-of-the-art.

0
0
下载
预览

Numerous real-world applications have been driven by the recent algorithmic advancement of artificial intelligence (AI). Healthcare is no exception and AI technologies have great potential to revolutionize the industry. Non-contact camera-based physiological sensing, including remote photoplethysmography (rPPG), is a set of imaging methods that leverages ordinary RGB cameras (e.g., webcam or smartphone camera) to capture subtle changes in electromagnetic radiation (e.g., light) reflected by the body caused by physiological processes. Because of the relative ubiquity of cameras, these methods not only have the ability to measure the signals without contact with the body but also have the opportunity to capture multimodal information (e.g., facial expressions, activities and other context) from the same sensor. However, developing accessible, equitable and useful camera-based physiological sensing systems comes with various challenges. In this article, we identify four research challenges for the field of camera-based physiological sensing and broader AI driven healthcare communities and suggest future directions to tackle these. We believe solving these challenges will help deliver accurate, equitable and generalizable AI systems for healthcare that are practical in real-world and clinical contexts.

0
0
下载
预览

During the development and maintenance of software-intensive products or services, we depend on various assets. These assets are important to the feasibility of the project and influence product's final quality. However, despite their central role in the software development process, little thought is yet invested into what assets eventually are, often resulting in many terms and underlying concepts being mixed and used inconsistently. A precise terminology of assets and related concepts, such as asset degradation, are crucial for setting up a new generation of cost-effective software engineering practices. In this position paper, we critically reflect upon the resulting notion of assets in software engineering. As a starting point, we define the terminology and concepts of assets and extend the reasoning behind them. We explore assets' characteristics such as value and persistence. We discuss what asset degradation is, its various types and the implications that asset degradation might bring for the planning, realisation, and evolution of software-intensive products and services over time. With our work, we aspire to contribute to a more standardised definition of assets in software engineering and foster research endeavours and their practical dissemination in a common, more unified direction.

0
0
下载
预览

In this work, we present a method for a probabilistic fusion of external depth and onboard proximity data to form a volumetric 3-D map of a robot's environment. We extend the Octomap framework to update a representation of the area around the robot, dependent on each sensor's optimal range of operation. Areas otherwise occluded from an external view are sensed with onboard sensors to construct a more comprehensive map of a robot's nearby space. Our simulated results show that a more accurate map with less occlusions can be generated by fusing external depth and onboard proximity data.

0
0
下载
预览

We present a learning-based approach for removing unwanted obstructions, such as window reflections, fence occlusions or raindrops, from a short sequence of images captured by a moving camera. Our method leverages the motion differences between the background and the obstructing elements to recover both layers. Specifically, we alternate between estimating dense optical flow fields of the two layers and reconstructing each layer from the flow-warped images via a deep convolutional neural network. The learning-based layer reconstruction allows us to accommodate potential errors in the flow estimation and brittle assumptions such as brightness consistency. We show that training on synthetically generated data transfers well to real images. Our results on numerous challenging scenarios of reflection and fence removal demonstrate the effectiveness of the proposed method.

0
6
下载
预览

When we humans look at a video of human-object interaction, we can not only infer what is happening but we can even extract actionable information and imitate those interactions. On the other hand, current recognition or geometric approaches lack the physicality of action representation. In this paper, we take a step towards a more physical understanding of actions. We address the problem of inferring contact points and the physical forces from videos of humans interacting with objects. One of the main challenges in tackling this problem is obtaining ground-truth labels for forces. We sidestep this problem by instead using a physics simulator for supervision. Specifically, we use a simulator to predict effects and enforce that estimated forces must lead to the same effect as depicted in the video. Our quantitative and qualitative results show that (a) we can predict meaningful forces from videos whose effects lead to accurate imitation of the motions observed, (b) by jointly optimizing for contact point and force prediction, we can improve the performance on both tasks in comparison to independent training, and (c) we can learn a representation from this model that generalizes to novel objects using few shot examples.

0
4
下载
预览

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

0
15
下载
预览

This paper addresses the problem of head detection in crowded environments. Our detection is based entirely on the geometric consistency across cameras with overlapping fields of view, and no additional learning process is required. We propose a fully unsupervised method for inferring scene and camera geometry, in contrast to existing algorithms which require specific calibration procedures. Moreover, we avoid relying on the presence of body parts other than heads or on background subtraction, which have limited effectiveness under heavy clutter. We cast the head detection problem as a stereo MRF-based optimization of a dense pedestrian height map, and we introduce a constraint which aligns the height gradient according to the vertical vanishing point direction. We validate the method in an outdoor setting with varying pedestrian density levels. With only three views, our approach is able to detect simultaneously tens of heavily occluded pedestrians across a large, homogeneous area.

0
3
下载
预览

We propose a no-reference image quality assessment (NR-IQA) approach that learns from rankings (RankIQA). To address the problem of limited IQA dataset size, we train a Siamese Network to rank images in terms of image quality by using synthetically generated distortions for which relative image quality is known. These ranked image sets can be automatically generated without laborious human labeling. We then use fine-tuning to transfer the knowledge represented in the trained Siamese Network to a traditional CNN that estimates absolute image quality from single images. We demonstrate how our approach can be made significantly more efficient than traditional Siamese Networks by forward propagating a batch of images through a single network and backpropagating gradients derived from all pairs of images in the batch. Experiments on the TID2013 benchmark show that we improve the state-of-the-art by over 5%. Furthermore, on the LIVE benchmark we show that our approach is superior to existing NR-IQA techniques and that we even outperform the state-of-the-art in full-reference IQA (FR-IQA) methods without having to resort to high-quality reference images to infer IQA.

0
3
下载
预览
小贴士
相关论文
Edward J. Smith,David Meger,Luis Pineda,Roberto Calandra,Jitendra Malik,Adriana Romero,Michal Drozdzal
0+阅读 · 10月26日
Yassir Zardoua,Astito Abdelali,Boulaala Mohammed
0+阅读 · 10月26日
Xin Liu,Shwetak Patel,Daniel McDuff
0+阅读 · 10月26日
Ehsan Zabardast,Julian Frattini,Javier Gonzalez-Huerta,Tony Gorschek,Daniel Mendez,Krzystof Wnuk
0+阅读 · 10月24日
Matthew Strong,Caleb Escobedo,Alessandro Roncone
0+阅读 · 10月21日
Learning to See Through Obstructions
Yu-Lun Liu,Wei-Sheng Lai,Ming-Hsuan Yang,Yung-Yu Chuang,Jia-Bin Huang
6+阅读 · 2020年4月2日
Use the Force, Luke! Learning to Predict Physical Forces by Simulating Effects
Kiana Ehsani,Shubham Tulsiani,Saurabh Gupta,Ali Farhadi,Abhinav Gupta
4+阅读 · 2020年3月26日
3D Hand Shape and Pose Estimation from a Single RGB Image
Liuhao Ge,Zhou Ren,Yuncheng Li,Zehao Xue,Yingying Wang,Jianfei Cai,Junsong Yuan
15+阅读 · 2019年3月3日
Geometry-Based Multiple Camera Head Detection in Dense Crowds
Nicola Pellicanò,Emanuel Aldea,Sylvie Le Hégarat-Mascle
3+阅读 · 2018年8月2日
Xialei Liu,Joost van de Weijer,Andrew D. Bagdanov
3+阅读 · 2017年7月26日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
6+阅读 · 2019年1月18日
计算机视觉的不同任务
专知
4+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
6+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
17+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】深度学习目标检测概览
机器学习研究会
9+阅读 · 2017年9月1日
Top