The relationship between the thermodynamic and computational characteristics of dynamical physical systems has been a major theoretical interest since at least the 19th century, and has been of increasing practical importance as the energetic cost of digital devices has exploded over the last half century. One of the most important thermodynamic features of real-world computers is that they operate very far from thermal equilibrium, in finite time, with many quickly (co-)evolving degrees of freedom. Such computers also must almost always obey multiple physical constraints on how they work. For example, all modern digital computers are periodic processes, governed by a global clock. Another example is that many computers are modular, hierarchical systems, with strong restrictions on the connectivity of their subsystems. This properties hold both for naturally occurring computers, like brains or Eukaryotic cells, as well as digital systems. These features of real-world computers are absent in 20th century analyses of the thermodynamics of computational processes, which focused on quasi-statically slow processes. However, the field of stochastic thermodynamics has been developed in the last few decades - and it provides the formal tools for analyzing systems that have exactly these features of real-world computers. We argue here that these tools, together with other tools currently being developed in stochastic thermodynamics, may help us understand at a far deeper level just how the fundamental physical properties of dynamic systems are related to the computation that they perform.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月22日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员