We study the behaviour of the familywise error rate (FWER) for Bonferroni-type procedure in multiple testing problem. Das and Bhandari in a recent article have shown that, in the equicorrelated normal setup, FWER asymptotically (i.e when number of hypotheses is very large) is a convex function of correlation $\rho$ and hence an upper bound on the FWER of Bonferroni-$\alpha$ procedure is given by $\alpha(1 - \rho)$. We derive upper bounds on FWER for Bonferroni method under the equicorrelated and general normal setups in asymptotic and non-asymptotic case. We show similar results for generalized familywise error rates.


翻译:我们研究了Bonferroni型程序在多重测试问题中的家族误差率(FWER)的行为。 Das 和 Bhandari 在最近的一篇文章中表明,在与公平相关的正常设置中,FWER 的被动状态(即假设数量非常大)是相关($rho$)的共振函数,因此Bonferroni-$\alpha$程序FWER的上限由$\alpha(1 -\rho)提供。我们在与公平相关的常规设置中,在与公平性和一般的正常设置中,我们从FWER获得对Bonferroni方法的上限值,在与公平性和非补救性案例下,我们显示了对普遍家庭误差率的类似结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员