The last several years have witnessed remarkable progress in video-and-language (VidL) understanding. However, most modern VidL approaches use complex and specialized model architectures and sophisticated pretraining protocols, making the reproducibility, analysis and comparisons of these frameworks difficult. Hence, instead of proposing yet another new VidL model, this paper conducts a thorough empirical study demystifying the most important factors in the VidL model design. Among the factors that we investigate are (i) the spatiotemporal architecture design, (ii) the multimodal fusion schemes, (iii) the pretraining objectives, (iv) the choice of pretraining data, (v) pretraining and finetuning protocols, and (vi) dataset and model scaling. Our empirical study reveals that the most important design factors include: temporal modeling, video-to-text multimodal fusion, masked modeling objectives, and joint training on images and videos. Using these empirical insights, we then develop a step-by-step recipe, dubbed VindLU, for effective VidL pretraining. Our final model trained using our recipe achieves comparable or better than state-of-the-art results on several VidL tasks without relying on external CLIP pretraining. In particular, on the text-to-video retrieval task, our approach obtains 61.2% on DiDeMo, and 55.0% on ActivityNet, outperforming current SOTA by 7.8% and 6.1% respectively. Furthermore, our model also obtains state-of-the-art video question-answering results on ActivityNet-QA, MSRVTT-QA, MSRVTT-MC and TVQA. Our code and pretrained models are publicly available at: https://github.com/klauscc/VindLU.


翻译:过去几年来, 视频与语言的理解取得了显著的进展。然而, 大多数现代视频与语言方法使用复杂和专业的模型架构和复杂的预训练协议, 使得这些框架的可重复性、分析和比较困难。因此, 本文不提出又一个新的视频与语言模型, 而是进行了一项深入实证研究, 揭示了视频与语言模型设计中最重要的因素。我们研究的因素包括: 空时结构设计, 多模态融合方案, 预训练目标, 预训练数据的选择, 预训练和微调协议以及数据集和模型规模。经过实证研究, 我们发现最重要的设计因素包括: 时间建模, 视频到文本多模态融合, 掩码建模目标以及图像和视频的联合训练。基于这些实证研究成果, 我们提出了一份逐步指南, 名为VindLU, 来实现视频与语言的有效预训练。我们使用我们的指南训练的最终模型在多个视频与语言任务上实现了与SOTA相当或优于SOTA的结果, 而不依赖于外部CLIP预训练。特别是, 在文本到视频检索任务中, 我们的方法在DiDeMo上达到了61.2%, 在ActivityNet上达到了55.0%, 分别比当前SOTA高出7.8%和6.1%。此外, 我们的模型在ActivityNet-QA、MSRVTT-QA、MSRVTT-MC和TVQA上也获得了最先进的视频问答结果。我们的代码和预训练模型可以在https://github.com/klauscc/VindLU公开获取。

0
下载
关闭预览

相关内容

【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
31+阅读 · 2022年4月23日
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
29+阅读 · 2022年3月12日
预训练语言模型fine-tuning近期进展概述
专知会员服务
36+阅读 · 2021年4月9日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
37+阅读 · 2021年4月9日
【AAAI2021】预训练语言模型最新进展,附113页ppt和视频
专知会员服务
64+阅读 · 2021年2月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
论文浅尝 | 弱监督下极简的视觉语言预训练模型
开放知识图谱
1+阅读 · 2022年9月26日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月22日
Transformers in Remote Sensing: A Survey
Arxiv
23+阅读 · 2022年9月2日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员