As an important part of genetic algorithms (GAs), mutation operators is widely used in evolutionary algorithms to solve $\mathcal{NP}$-hard problems because it can increase the population diversity of individual. Due to limitations in mathematical tools, the mutation probability of the mutation operator is primarily empirically set in practical applications. In this paper, we propose a novel reduction method for the 0-1 knapsack problem(0-1 KP) and an improved mutation operator (IMO) based on the assumption $\mathcal{NP}\neq\mathcal{P}$, along with the utilization of linear relaxation techniques and a recent result by Dey et al. (Math. Prog., pp 569-587, 2022). We employ this method to calculate an upper bound of the mutation probability in general instances of the 0-1 KP, and construct an instance where the mutation probability does not tend towards 0 as the problem size increases. Finally, we prove that the probability of the IMO hitting the optimal solution within only a single iteration in large-scale instances is superior to that of the traditional mutation operator.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员