The growth in variable renewables such as solar and wind is increasing the impact of climate uncertainty in energy system planning. Addressing this ideally requires high-resolution time series spanning at least a few decades. However, solving capacity expansion planning models across such datasets often requires too much computing time or memory. To reduce computational cost, users often employ time series aggregation to compress demand and weather time series into a smaller number of time steps. Methods are usually a priori, employing information about the input time series only. Recent studies highlight the limitations of this approach, since reducing statistical error metrics on input time series does not in general lead to more accurate model outputs. Furthermore, many aggregation schemes are unsuitable for models with storage since they distort chronology. In this paper, we introduce a posteriori time series aggregation schemes for models with storage. Our methods adapt to the underlying energy system model; aggregation may differ in systems with different technologies or topologies even with the same time series inputs. Furthermore, they preserve chronology and hence allow modelling of storage technologies. We investigate a number of approaches. We find that a posteriori methods can perform better than a priori ones, primarily through a systematic identification and preservation of relevant extreme events. We hope that these tools render long demand and weather time series more manageable in capacity expansion planning studies. We make our models, data, and code publicly available.


翻译:太阳能和风能等可变可再生能源的增长正在增加能源系统规划中气候不确定性的影响。 解决这个问题最理想的是需要至少几十年的高分辨率时间序列。 然而,解决这些数据集的能力扩展规划模型往往需要过多的计算时间或记忆。 为了降低计算成本,用户往往使用时间序列汇总将需求和天气时间序列压缩到较少的时间步骤中。 方法通常是先验的,只使用输入时间序列的信息。 最近的研究强调了这一方法的局限性,因为减少投入时间序列中的统计误差指标一般不会导致更准确的模型产出。 此外,许多集成计划不适合存储模型的模型,因为它们扭曲了时间顺序。 在本文中,我们为存储模型引入了后序时间序列汇总计划。我们的方法适应了基本能源系统模型;在使用不同技术的系统中,或即使有相同的时间序列投入,汇总也可能有所不同。此外,它们保存了时间序列,从而允许对存储技术进行建模。 我们调查了一些方法。 我们发现,后序方法可以比先前的存储模型更好,因为它们扭曲了时间序列,我们主要通过系统化的天气规划模型,我们更需要一种可理解的极端的数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月21日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员