Future, "NextG" cellular networks will be natively cloud-based and built upon programmable, virtualized, and disaggregated architectures. The separation of control functions from the hardware fabric and the introduction of standardized control interfaces will enable the definition of custom closed-control loops, which will ultimately enable embedded intelligence and real-time analytics, thus effectively realizing the vision of autonomous and self-optimizing networks. This article explores the NextG disaggregated architecture proposed by the O-RAN Alliance. Within this architectural context, it discusses potential, challenges, and limitations of data-driven optimization approaches to network control over different timescales. It also provides the first large-scale demonstration of the integration of O-RAN-compliant software components with an open-source full-stack softwarized cellular network. Experiments conducted on Colosseum, the world's largest wireless network emulator, demonstrate closed-loop integration of real-time analytics and control through deep reinforcement learning agents. We also demonstrate for the first time Radio Access Network (RAN) control through xApps running on the near real-time RAN Intelligent Controller (RIC), to optimize the scheduling policies of co-existing network slices, leveraging O-RAN open interfaces to collect data at the edge of the network.


翻译:未来“ 下G” 蜂窝网络将以本地云为基础,以可编程、虚拟化和分类结构为基础。控制功能与硬件结构分离,并采用标准化控制界面,将使得能够定义定制封闭控制环,最终将促成嵌入智能和实时分析,从而有效地实现自主和自我优化网络的愿景。本篇文章探讨了O-RAN联盟提议的“下G”分类结构。在这一建筑范围内,本文章讨论了不同时间尺度网络控制的数据驱动优化方法的潜力、挑战和局限性。它还首次大规模展示了符合O-RAN要求的软件组件与开放源全斯塔克软战化蜂窝网络的整合。在Colossoumeum上进行的实验,这是世界上最大的无线网络模拟器,展示了实时分析和控制的闭环整合,通过深层学习剂进行。我们还展示了通过在近实时服务器界面上运行的XApps(RAN)对网络进行的数据访问控制的潜力、挑战和限制,并首次展示了OAN- RAN- 最优化网络的磁带磁带磁带到磁带磁带磁带的磁带磁带磁带磁带磁带定位网络。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2018年12月26日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员