Participatory budgeting (PB) has been widely adopted and has attracted significant research efforts; however, there is a lack of mechanisms for PB which elicit project interactions, such as substitution and complementarity, from voters. Also, the outcomes of PB in practice are subject to various minimum/maximum funding constraints on 'types' of projects. We propose a novel preference elicitation scheme for PB which allows voters to express how their utilities from projects within 'groups' interact. We consider preference aggregation done under minimum and maximum funding constraints on 'types' of projects, where a project can have multiple type labels as long as this classification can be defined by a 1-laminar structure (henceforth called 1-laminar funding constraints). Overall, we extend the Knapsack voting model of Goel et al. [26] in two ways - enriching the preference elicitation scheme to include project interactions and generalizing the preference aggregation scheme to include 1-laminar funding constraints. We show that the strategyproofness results of Goel et al. [26] for Knapsack voting continue to hold under 1-laminar funding constraints. Moreover, when the funding constraints cannot be described by a 1-laminar structure, strategyproofness does not hold. Although project interactions often break the strategyproofness, we study a special case of vote profiles where truthful voting is a Nash equilibrium under substitution project interactions. We then study the computational complexity of preference aggregation. Social welfare maximization under project interactions is NP-hard. As a workaround for practical instances, we give a fixed parameter tractable (FPT) algorithm for social welfare maximization with respect to the maximum number of projects in a group when the overall budget is specified in a fixed number of bits.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员