In the intrinsically motivated skills acquisition problem, the agent is set in an environment without any pre-defined goals and needs to acquire an open-ended repertoire of skills. To do so the agent needs to be autotelic (deriving from the Greek auto (self) and telos (end goal)): it needs to generate goals and learn to achieve them following its own intrinsic motivation rather than external supervision. Autotelic agents have so far been considered in isolation. But many applications of open-ended learning entail groups of agents. Multi-agent environments pose an additional challenge for autotelic agents: to discover and master goals that require cooperation agents must pursue them simultaneously, but they have low chances of doing so if they sample them independently. In this work, we propose a new learning paradigm for modeling such settings, the Decentralized Intrinsically Motivated Skills Acquisition Problem (Dec-IMSAP), and employ it to solve cooperative navigation tasks. First, we show that agents setting their goals independently fail to master the full diversity of goals. Then, we show that a sufficient condition for achieving this is to ensure that a group aligns its goals, i.e., the agents pursue the same cooperative goal. Our empirical analysis shows that alignment enables specialization, an efficient strategy for cooperation. Finally, we introduce the Goal-coordination game, a fully-decentralized emergent communication algorithm, where goal alignment emerges from the maximization of individual rewards in multi-goal cooperative environments and show that it is able to reach equal performance to a centralized training baseline that guarantees aligned goals. To our knowledge, this is the first contribution addressing the problem of intrinsically motivated multi-agent goal exploration in a decentralized training paradigm.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
34+阅读 · 2022年12月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员