Low-resource Relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce. Existing works either utilize self-training scheme to generate pseudo labels that will cause the gradual drift problem, or leverage meta-learning scheme which does not solicit feedback explicitly. To alleviate selection bias due to the lack of feedback loops in existing LRE learning paradigms, we developed a Gradient Imitation Reinforcement Learning method to encourage pseudo label data to imitate the gradient descent direction on labeled data and bootstrap its optimization capability through trial and error. We also propose a framework called GradLRE, which handles two major scenarios in low-resource relation extraction. Besides the scenario where unlabeled data is sufficient, GradLRE handles the situation where no unlabeled data is available, by exploiting a contextualized augmentation method to generate data. Experimental results on two public datasets demonstrate the effectiveness of GradLRE on low resource relation extraction when comparing with baselines.
翻译:低资源关系提取(LRE)的目的是在人类笔记很少时从有限的标签公司中提取关系事实; 现有的工程要么利用自我培训计划产生将造成逐渐漂移问题的假标签,要么利用没有明确征求反馈的元学习计划; 为了减轻因现有LRE学习模式缺乏反馈循环而造成的选择偏差, 我们开发了一种渐进式消化强化学习方法, 以鼓励假标签数据模仿标签数据中的梯度下降方向, 并用试验和误差来套用其优化能力。 我们还提议了一个称为 GradLRE的框架, 该框架处理两种低资源关系提取的主要假设。 除了无标签数据足够的情况下, GradLRE 利用一种环境化增强方法生成数据。 两个公共数据集的实验结果显示, GradLRE 与基线比较时, 低资源关系提取的有效性 。