Many studies have examined social determinants of health (SDoH) factors independently, overlooking their interconnected and intersectional nature. Our study takes a multifactorial approach to construct a neighborhood level measure of SDoH and explores how neighborhood residency impacts care received by endometrial cancer patients in Massachusetts. We used a Bayesian multivariate Bernoulli mixture model to create and characterize neighborhood SDoH (NSDoH) profiles using the 2015-2019 American Community Survey at the census tract level (n=1478), incorporating 18 variables across four domains: housing conditions and resources, economic security, educational attainment, and social and community context. We linked these profiles to Massachusetts Cancer Registry data to estimate the odds of receiving optimal care for endometrial cancer using Bayesian multivariate logistic regression. The model identified eight NSDoH profiles. Profiles 1 and 2 accounted for 27% and 25% of census tracts, respectively. Profile 1 featured neighborhoods with high homeownership, above median incomes, and high education, while Profile 2 showed higher probabilities of limited English proficiency, renters, lower education, and working class jobs. After adjusting for sociodemographic and clinical characteristics, we found no statistically significant association between NSDoH profiles and receipt of optimal care. However, compared to patients in NSDoH Profile 1, those in Profile 2 had lower odds of receiving optimal care, OR = 0.77, 95% CI (0.56, 1.07). Our results demonstrate the interconnected and multidimensional nature of NSDoH, underscoring the importance of modeling them accordingly. This study also highlights the need for targeted interventions at the neighborhood level to address underlying drivers of health disparities, ensure equitable healthcare delivery, and foster better outcomes for all patients.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员