Maximal leakage quantifies the leakage of information from data $X \in \mathcal{X}$ due to an observation $Y$. While fundamental properties of maximal leakage, such as data processing, sub-additivity, and its connection to mutual information, are well-established, its behavior over Bayesian networks is not well-understood and existing bounds are primarily limited to binary $\mathcal{X}$. In this paper, we investigate the behavior of maximal leakage over Bayesian networks with finite alphabets. Our bounds on maximal leakage are established by utilizing coupling-based characterizations which exist for channels satisfying certain conditions. Furthermore, we provide more general conditions under which such coupling characterizations hold for $|\mathcal{X}| = 4$. In the course of our analysis, we also present a new simultaneous coupling result on maximal leakage exponents. Finally, we illustrate the effectiveness of the proposed bounds with some examples.


翻译:最大泄漏量化了由于观测变量 $Y$ 导致数据 $X \in \mathcal{X}$ 的信息泄漏程度。尽管最大泄漏的基本性质(如数据处理、次可加性及其与互信息的联系)已得到充分确立,但其在贝叶斯网络上的行为尚未被充分理解,且现有界主要局限于二元 $\mathcal{X}$。本文研究了有限字母表下贝叶斯网络上最大泄漏的行为。我们通过利用满足特定条件的信道所存在的基于耦合的表征,建立了最大泄漏的界。此外,针对 $|\mathcal{X}| = 4$ 的情况,我们给出了此类耦合表征成立的更一般条件。在分析过程中,我们还提出了关于最大泄漏指数的新同步耦合结果。最后,通过若干示例说明了所提界的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员