In 1965 Erd\H{o}s asked, what is the largest size of a family of $k$-element subsets of an $n$-element set that does not have a matching of size $s+1$? In this note, we improve upon a recent result of Frankl and resolve this problem for $s>101k^{3}$ and $(s+1)k\le n<(s+1)(k+\frac{1}{100k})$.
翻译:在1965年Erd\H{o}问道,一个家庭最大的规模是美元-元素子集的美元-元素子集,其大小不等于美元+1美元。 在本说明中,我们改进了弗兰克(Frankl)最近的结果,解决了这个问题,用美元+101k ⁇ 3美元和美元+1k\le n < s+1 > (k ⁇ frac{1 ⁇ 100k})解决了这个问题。