Marine surveys by robotic underwater and surface vehicles result in substantial quantities of coral reef imagery, however labeling these images is expensive and time-consuming for domain experts. Point label propagation is a technique that uses existing images labeled with sparse points to create augmented ground truth data, which can be used to train a semantic segmentation model. In this work, we show that recent advances in large foundation models facilitate the creation of augmented ground truth masks using only features extracted by the denoised version of the DINOv2 foundation model and K-Nearest Neighbors (KNN), without any pre-training. For images with extremely sparse labels, we present a labeling method based on human-in-the-loop principles, which greatly enhances annotation efficiency: in the case that there are 5 point labels per image, our human-in-the-loop method outperforms the prior state-of-the-art by 14.2% for pixel accuracy and 19.7% for mIoU; and by 8.9% and 18.3% if there are 10 point labels. When human-in-the-loop labeling is not available, using the denoised DINOv2 features with a KNN still improves on the prior state-of-the-art by 2.7% for pixel accuracy and 5.8% for mIoU (5 grid points). On the semantic segmentation task, we outperform the prior state-of-the-art by 8.8% for pixel accuracy and by 13.5% for mIoU when only 5 point labels are used for point label propagation. Additionally, we perform a comprehensive study into the impacts of the point label placement style and the number of points on the point label propagation quality, and make several recommendations for improving the efficiency of labeling images with points.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员