Transparent objects are a very challenging problem in computer vision. They are hard to segment or classify due to their lack of precise boundaries, and there is limited data available for training deep neural networks. As such, current solutions for this problem employ rigid synthetic datasets, which lack flexibility and lead to severe performance degradation when deployed on real-world scenarios. In particular, these synthetic datasets omit features such as refraction, dispersion and caustics due to limitations in the rendering pipeline. To address this issue, we present SuperCaustics, a real-time, open-source simulation of transparent objects designed for deep learning applications. SuperCaustics features extensive modules for stochastic environment creation; uses hardware ray-tracing to support caustics, dispersion, and refraction; and enables generating massive datasets with multi-modal, pixel-perfect ground truth annotations. To validate our proposed system, we trained a deep neural network from scratch to segment transparent objects in difficult lighting scenarios. Our neural network achieved performance comparable to the state-of-the-art on a real-world dataset using only 10% of the training data and in a fraction of the training time. Further experiments show that a model trained with SuperCaustics can segment different types of caustics, even in images with multiple overlapping transparent objects. To the best of our knowledge, this is the first such result for a model trained on synthetic data. Both our open-source code and experimental data are freely available online.


翻译:透明天体在计算机视觉中是一个极具挑战性的问题。 它们很难分割或分类, 因为它们缺乏准确的边界, 并且用于培训深层神经网络的数据有限。 因此, 目前解决这个问题的解决方案采用僵硬的合成数据集, 缺乏灵活性, 导致在现实世界情景下部署时性能严重退化。 特别是, 这些合成数据集忽略了诸如折射、 分散和苛刻等特征, 原因是输电管道的局限性。 为了解决这个问题, 我们展示了超级计算机, 这是设计用于深层学习应用的透明天体的实时、 开源模拟。 超级计算机是用于创建深层神经网络的大型模块; 超级计算机是用于创建随机环境的广度模块; 使用硬件光谱仪仪支持苛刻、 分散和折叠; 能够生成具有多模式、 等效果的大型数据集。 为了验证我们提议的系统, 我们训练了一个深层神经网络, 从刮伤到在困难的照明情景下有条块透明的物体。 我们的开放式神经网络实现了与现实状态数据模型相似的功能。 高级数据模型具有广泛的模块化模型的功能, 只有10%, 并且经过训练过的多层次的模型能显示我们经过训练的模型, 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
10+阅读 · 2021年11月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
9+阅读 · 2018年4月20日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员