Localizing 3D objects using natural language is essential for robotic scene understanding. The descriptions often involve multiple spatial relationships to distinguish similar objects, making 3D-language alignment difficult. Current methods only model relationships for pairwise objects, ignoring the global perceptual significance of n-ary combinations in multi-modal relational understanding. To address this, we propose a novel progressive relational learning framework for 3D object grounding. We extend relational learning from binary to n-ary to identify visual relations that match the referential description globally. Given the absence of specific annotations for referred objects in the training data, we design a grouped supervision loss to facilitate n-ary relational learning. In the scene graph created with n-ary relationships, we use a multi-modal network with hybrid attention mechanisms to further localize the target within the n-ary combinations. Experiments and ablation studies on the ReferIt3D and ScanRefer benchmarks demonstrate that our method outperforms the state-of-the-art, and proves the advantages of the n-ary relational perception in 3D localization.


翻译:利用自然语言定位三维物体对于机器人场景理解至关重要。描述通常涉及多个空间关系以区分相似物体,这使得三维与语言的对齐变得困难。现有方法仅对成对物体的关系进行建模,忽略了多元组合在多模态关系理解中的全局感知重要性。为解决这一问题,我们提出了一种新颖的渐进式关系学习框架用于三维物体定位。我们将关系学习从二元扩展到多元,以全局识别与指称描述匹配的视觉关系。鉴于训练数据中缺乏针对所指物体的具体标注,我们设计了一种分组监督损失以促进多元关系学习。在基于多元关系构建的场景图中,我们采用具有混合注意力机制的多模态网络,进一步在多元组合中定位目标。在ReferIt3D和ScanRefer基准上的实验与消融研究表明,我们的方法优于现有最先进技术,并证明了多元关系感知在三维定位中的优势。

0
下载
关闭预览

相关内容

【NeurIPS2023】CQM: 与量化世界模型的课程强化学习
专知会员服务
25+阅读 · 2023年10月29日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员