Maximum bipartite matching (MBM) is a fundamental problem in combinatorial optimization with a long and rich history. A classic result of Hopcroft and Karp (1973) provides an $O(m \sqrt{n})$-time algorithm for the problem, where $n$ and $m$ are the number of vertices and edges in the input graph, respectively. For dense graphs, an approach based on fast matrix multiplication achieves a running time of $O(n^{2.371})$. For several decades, these results represented state-of-the-art algorithms, until, in 2013, Madry introduced a powerful new approach for solving MBM using continuous optimization techniques. This line of research led to several spectacular results, culminating in a breakthrough $m^{1+o(1)}$-time algorithm for min-cost flow, that implies an $m^{1+o(1)}$-time algorithm for MBM as well. These striking advances naturally raise the question of whether combinatorial algorithms can match the performance of the algorithms that are based on continuous techniques for MBM. A recent work of the authors (2024) made progress on this question by giving a combinatorial $\tilde{O}(m^{1/3}n^{5/3})$-time algorithm for MBM, thus outperforming both the Hopcroft-Karp algorithm and matrix multiplication based approaches, on sufficiently dense graphs. Still, a large gap remains between the running time of their algorithm and the almost linear-time achievable by algorithms based on continuous techniques. In this work, we take another step towards narrowing this gap, and present a randomized $n^{2+o(1)}$-time combinatorial algorithm for MBM. Thus in dense graphs, our algorithm essentially matches the performance of algorithms that are based on continuous methods. We also obtain a randomized $n^{2+o(1)}$-time combinatorial algorithm for maximum vertex-capacitated $s$-$t$ flow in directed graphs when all vertex capacities are identical, using a standard reduction from this problem to MBM.


翻译:暂无翻译

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员