We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution.
翻译:我们开发了用于传播基因模型的确定性采样器的非抽取分析框架。最近的一些工程利用Girsanov的理论和内推论的链规则变体等工具分析了随机采样器。 不幸的是,这些技术在应用到确定性采样器时提供了空隙的界限。我们对确定性采样提供了一种新的操作解释,显示在概率流中可以用两个步骤来表示:(1) 恢复步骤,在极小的以前某些时候,在有条件的日志相似性上将梯度提高;(2) 退化步骤,利用向当前迭代体的噪音来推动前向进程。这一视角使我们能够将分解扩散的隐含模型扩大到一般的非线前方过程。然后,我们在数据分布的温和条件下,为这些采样器开发了第一个多球汇合线。</s>