We propose a novel and practical privacy notion called $f$-Membership Inference Privacy ($f$-MIP), which explicitly considers the capabilities of realistic adversaries under the membership inference attack threat model. Consequently, $f$-MIP offers interpretable privacy guarantees and improved utility (e.g., better classification accuracy). In particular, we derive a parametric family of $f$-MIP guarantees that we refer to as $\mu$-Gaussian Membership Inference Privacy ($\mu$-GMIP) by theoretically analyzing likelihood ratio-based membership inference attacks on stochastic gradient descent (SGD). Our analysis highlights that models trained with standard SGD already offer an elementary level of MIP. Additionally, we show how $f$-MIP can be amplified by adding noise to gradient updates. Our analysis further yields an analytical membership inference attack that offers two distinct advantages over previous approaches. First, unlike existing state-of-the-art attacks that require training hundreds of shadow models, our attack does not require any shadow model. Second, our analytical attack enables straightforward auditing of our privacy notion $f$-MIP. Finally, we quantify how various hyperparameters (e.g., batch size, number of model parameters) and specific data characteristics determine an attacker's ability to accurately infer a point's membership in the training set. We demonstrate the effectiveness of our method on models trained on vision and tabular datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月12日
Arxiv
0+阅读 · 2023年12月11日
Arxiv
0+阅读 · 2023年12月9日
Arxiv
0+阅读 · 2023年12月9日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年12月12日
Arxiv
0+阅读 · 2023年12月11日
Arxiv
0+阅读 · 2023年12月9日
Arxiv
0+阅读 · 2023年12月9日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员