Fairness-aware machine learning has garnered significant attention in recent years because of extensive use of machine learning in sensitive applications like judiciary systems. Various heuristics, and optimization frameworks have been proposed to enforce fairness in classification \cite{del2020review} where the later approaches either provides empirical results or provides fairness guarantee for the exact minimizer of the objective function \cite{celis2019classification}. In modern machine learning, Stochastic Gradient Descent (SGD) type algorithms are almost always used as training algorithms implying that the learned model, and consequently, its fairness properties are random. Hence, especially for crucial applications, it is imperative to construct Confidence Interval (CI) for the fairness of the learned model. In this work we provide CI for test unfairness when a group-fairness-aware, specifically, Disparate Impact (DI), and Disparate Mistreatment (DM) aware linear binary classifier is trained using online SGD-type algorithms. We show that asymptotically a Central Limit Theorem holds for the estimated model parameter of both DI and DM-aware models. We provide online multiplier bootstrap method to estimate the asymptotic covariance to construct online CI. To do so, we extend the known theoretical guarantees shown on the consistency of the online bootstrap method for unconstrained SGD to constrained optimization which could be of independent interest. We illustrate our results on synthetic and real datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员