Smart contract transactions associated with security attacks often exhibit distinct behavioral patterns compared with historical benign transactions before the attacking events. While many runtime monitoring and guarding mechanisms have been proposed to validate invariants and stop anomalous transactions on the fly, the empirical effectiveness of the invariants used remains largely unexplored. In this paper, we studied 23 prevalent invariants of 8 categories, which are either deployed in high-profile protocols or endorsed by leading auditing firms and security experts. Using these well-established invariants as templates, we developed a tool Trace2Inv which dynamically generates new invariants customized for a given contract based on its historical transaction data. We evaluated Trace2Inv on 42 smart contracts that fell victim to 27 distinct exploits on the Ethereum blockchain. Our findings reveal that the most effective invariant guard alone can successfully block 18 of the 27 identified exploits with minimal gas overhead. Our analysis also shows that most of the invariants remain effective even when the experienced attackers attempt to bypass them. Additionally, we studied the possibility of combining multiple invariant guards, resulting in blocking up to 23 of the 27 benchmark exploits and achieving false positive rates as low as 0.32%. Trace2Inv outperforms current state-of-the-art works on smart contract invariant mining and transaction attack detection in terms of both practicality and accuracy. Though Trace2Inv is not primarily designed for transaction attack detection, it surprisingly found two previously unreported exploit transactions, earlier than any reported exploit transactions against the same victim contracts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
17+阅读 · 2019年3月28日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员