We obtain structure theorems for graphs excluding a fan (a path with a universal vertex) or a dipole ($K_{2,k}$) as a topological minor. The corresponding decompositions can be computed in FPT linear time. This is motivated by the study of a graph parameter we call treebandwidth which extends the graph parameter bandwidth by replacing the linear layout by a rooted tree such that neighbours in the graph are in ancestor-descendant relation in the tree. We deduce an approximation algorithm for treebandwidth running in FPT linear time from our structure theorems. We complement this result with a precise characterisation of the parameterised complexity of computing the parameter exactly.
翻译:暂无翻译