We analyze the competitive ratio and the advice complexity of the online unbounded knapsack problem. An instance is given as a sequence of n items with a size and a value each, and an algorithm has to decide how often to pack each item into a knapsack of bounded capacity. The items are given online and the total size of the packed items must not exceed the knapsack's capacity, while the objective is to maximize the total value of the packed items. While each item can only be packed once in the classical 0-1 knapsack problem, the unbounded version allows for items to be packed multiple times. We show that the simple unbounded knapsack problem, where the size of each item is equal to its value, allows for a competitive ratio of 2. We also analyze randomized algorithms and show that, in contrast to the 0-1 knapsack problem, one uniformly random bit cannot improve an algorithm's performance. More randomness lowers the competitive ratio to less than 1.736, but it can never be below 1.693. In the advice complexity setting, we measure how many bits of information the algorithm has to know to achieve some desired solution quality. For the simple unbounded knapsack problem, one advice bit lowers the competitive ratio to 3/2. While this cannot be improved with fewer than log(n) advice bits for instances of length n, a competitive ratio of 1+epsilon can be achieved with O(log(n/epsilon)/epsilon) advice bits for any epsilon>0. We further show that no amount of advice bounded by a function f(n) allows an algorithm to be optimal. We also study the online general unbounded knapsack problem and show that it does not allow for any bounded competitive ratio for deterministic and randomized algorithms, as well as for algorithms using fewer than log(n) advice bits. We also provide an algorithm that uses O(log(n/epsilon)/epsilon) advice bits to achieve a competitive ratio of 1+epsilon for any epsilon>0.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
15+阅读 · 2022年5月14日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
1+阅读 · 2024年12月13日
Arxiv
15+阅读 · 2022年5月14日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员