Imposing orthogonal transformations between layers of a neural network has been considered for several years now. This facilitates their learning, by limiting the explosion/vanishing of the gradient; decorrelates the features; improves the robustness. In this framework, this paper studies theoretical properties of orthogonal convolutional layers. More precisely, we establish necessary and sufficient conditions on the layer architecture guaranteeing the existence of an orthogonal convolutional transform. These conditions show that orthogonal convolutional transforms exist for almost all architectures used in practice. Recently, a regularization term imposing the orthogonality of convolutional layers has been proposed. We make the link between this regularization term and orthogonality measures. In doing so, we show that this regularization strategy is stable with respect to numerical and optimization errors and remains accurate when the size of the signals/images is large. This holds for both row and column orthogonality. Finally, we confirm these theoretical results with experiments, and also empirically study the landscape of the regularization term.


翻译:多年来一直考虑在神经网络各层之间进行正向变形,这有利于他们学习,限制梯度的爆炸/衰落;调整特征;改进强度;在此框架内,本文件研究正向相交层的理论特性;更准确地说,我们在层结构上建立必要和充分的条件,保证存在正向共转变。这些条件表明几乎所有实际使用的架构都存在正向变形。最近,提出了一个规范化术语,规定卷变层的正向性;我们把这个正规化术语和正向性计量方法联系起来。在这样做时,我们表明这一规范化战略在数字和优化错误方面是稳定的,在信号/图像大小大时,保持准确性。这既适用于行,也适用于柱形或直线。最后,我们通过实验证实了这些理论结果,同时也以经验方式研究正规化术语的面貌。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员