The success of automatic speaker verification shows that discriminative speaker representations can be extracted from neutral speech. However, as a kind of non-verbal voice, laughter should also carry speaker information intuitively. Thus, this paper focuses on exploring speaker verification about utterances containing non-verbal laughter segments. We collect a set of clips with laughter components by conducting a laughter detection script on VoxCeleb and part of the CN-Celeb dataset. To further filter untrusted clips, probability scores are calculated by our binary laughter detection classifier, which is pre-trained by pure laughter and neutral speech. After that, based on the clips whose scores are over the threshold, we construct trials under two different evaluation scenarios: Laughter-Laughter (LL) and Speech-Laughter (SL). Then a novel method called Laughter-Splicing based Network (LSN) is proposed, which can significantly boost performance in both scenarios and maintain the performance on the neutral speech, such as the VoxCeleb1 test set. Specifically, our system achieves relative 20% and 22% improvement on Laughter-Laughter and Speech-Laughter trials, respectively. The meta-data and sample clips have been released at https://github.com/nevermoreLin/Laugh_LSN.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员