We study discrete diffusion for language and other categorical data and focus on a common limitation of masked denoisers: reverse transitions typically factorize across positions, which can weaken joint structure and degrade quality in few-step generation. We propose \emph{Latent Discrete Diffusion Models} (LDDMs), which couple a masked discrete diffusion over tokens with a continuous diffusion over latent embeddings. The latent channel provides a softer signal and carries cross-token dependencies that help resolve ambiguities. We present two instantiations: (i) FUJI-LDDMs, which perform fully joint denoising of tokens and latents, and (ii) SEQ-LDDMs, which sequentially resolve the latent and then the discrete chain conditionally on it. For both variants we derive ELBO-style objectives and discuss design choices to learn informative latents yet amenable to diffusoin modeling. In experiments, LDDMs yield improvements on unconditional generation metrics as compared to state-of-the-art masked discrete diffusion baselines, and are effective at lower sampling budgets, where unmasking many tokens per step is desirable.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员