In Tennenholtz's program equilibrium, players of a game submit programs to play on their behalf. Each program receives the other programs' source code and outputs an action. This can model interactions involving AI agents, mutually transparent institutions, or commitments. Tennenholtz (2004) proves a folk theorem for program games, but the equilibria constructed are very brittle. We therefore consider simulation-based programs -- i.e., programs that work by running opponents' programs. These are relatively robust (in particular, two programs that act the same are treated the same) and are more practical than proof-based approaches. Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot is such an approach. Unfortunately, it is not generally applicable to games of three or more players, and only allows for a limited range of equilibria in two player games. In this paper, we propose a generalisation to Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot. We prove a folk theorem for our programs in a setting with access to a shared source of randomness. We then characterise their equilibria in a setting without shared randomness. Both with and without shared randomness, we achieve a much wider range of equilibria than Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot. Finally, we explore the limits of simulation-based program equilibrium, showing that the Tennenholtz folk theorem cannot be attained by simulation-based programs without access to shared randomness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员