Continual Semantic Segmentation (CSS) extends static semantic segmentation by incrementally introducing new classes for training. To alleviate the catastrophic forgetting issue in CSS, a memory buffer that stores a small number of samples from the previous classes is constructed for replay. However, existing methods select the memory samples either randomly or based on a single-factor-driven handcrafted strategy, which has no guarantee to be optimal. In this work, we propose a novel memory sample selection mechanism that selects informative samples for effective replay in a fully automatic way by considering comprehensive factors including sample diversity and class performance. Our mechanism regards the selection operation as a decision-making process and learns an optimal selection policy that directly maximizes the validation performance on a reward set. To facilitate the selection decision, we design a novel state representation and a dual-stage action space. Our extensive experiments on Pascal-VOC 2012 and ADE 20K datasets demonstrate the effectiveness of our approach with state-of-the-art (SOTA) performance achieved, outperforming the second-place one by 12.54% for the 6stage setting on Pascal-VOC 2012.
翻译:持续语义分割(CSS)通过逐步引入新的训练类别来扩展静态语义分割。为了缓解CSS中的灾难性遗忘问题,构建了一个存储少量先前类别样本的缓冲区以供回放。然而,现有方法仅仅是随机选择或者基于一种单因素驱动的手工策略来选择记忆样本,这不能保证是最优的。本文提出了一种新的记忆样本选择机制,全自动选择包含综合因素(包括样本多样性和类别表现)的信息样本以进行有效重放,将选择操作视为决策过程,并学习一个直接在奖励集上最大化验证性能的最优选择策略。为了促进选择决策,本文设计了一种新的状态表示和双阶段行动空间。在Pascal-VOC 2012和ADE 20K数据集上的广泛实验表明,我们的方法有效性得到了证明,并取得了最先进的性能,对于Pascal-VOC 2012上的6阶段设置,超过第二名12.54%。