As a crucial part of video compression, intra prediction utilizes local information of images to eliminate the redundancy in spatial domain. In both H.265/HEVC and H.266/VVC, multiple directional prediction modes are employed to find the texture trend of each small block and then the prediction is made based on reference samples in the selected direction. Recently, the intra prediction schemes based on neural networks have achieved great success. In these methods, the networks are trained and applied to intra prediction in addition to the directional prediction modes. In this paper, we propose a novel data clustering-driven neural network (dubbed DCDNN) for intra prediction, which can learn deep features of the clustered data. In DCDNN, each network can be split into two networks by adding or subtracting Gaussian random noise. Then a data clustering-driven training is applied to train all the derived networks recursively. In each iteration, the entire training dataset is partitioned according to the recovery qualities of the derived networks. For the experiment, DCDNN is implemented into HEVC reference software HM-16.9. The experimental results demonstrate that DCDNN can reach an average of 4.2% Bjontegaard distortion rate (BDrate) improvement (up to 7.0%) over HEVC with all intra configuration. Compared with existing fully connected networkbased intra prediction methods, the bitrate saving performance is further improved.


翻译:作为视频压缩的一个关键部分,内部预测利用图像的本地信息消除空间域的冗余。在H.265/HEVC和H.266/VVC中,使用多重方向预测模式查找每个小区块的纹理趋势,然后根据选定方向的参考样本进行预测。最近,以神经网络为基础的内部预测计划取得了巨大成功。在这些方法中,除了定向预测模式之外,网络还接受培训并应用于内部预测。在本文中,我们提议建立一个用于内部预测的新的数据集群驱动神经网络(dubbbed DCDNNN),用于内部预测,可以学习集成数据的深层特征。在DCDNNNN中,每个网络都可以通过增减高标随机噪音分为两个网络。随后,根据数据集群驱动的培训实现了所有衍生网络的循环培训。在每次循环中,整个培训数据集根据衍生网络的恢复质量进行分解。对于实验,DCDNNNN将应用到 HEVC 参考软件H-16.9,可以学习集数据的深度特征数据。在DCDNC内部网络中,通过增加4.2%的升级,将实验结果显示DNDNCD升级到目前的平均速度将达到4.2%的升级为BNC。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
123+阅读 · 2021年6月4日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
专知会员服务
59+阅读 · 2020年3月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
37+阅读 · 2020年2月21日
TensorFlow 2.0 Datasets 数据集载入
TensorFlow
6+阅读 · 2020年1月31日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
3+阅读 · 2020年2月5日
VIP会员
相关资讯
TensorFlow 2.0 Datasets 数据集载入
TensorFlow
6+阅读 · 2020年1月31日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员