Nanopore sequencing, superior to other sequencing technologies for DNA storage in multiple aspects, has recently attracted considerable attention. Its high error rates, however, demand thorough research on practical and efficient coding schemes to enable accurate recovery of stored data. To this end, we consider a simplified model of a nanopore sequencer inspired by Mao \emph{et al.}, incorporating intersymbol interference and measurement noise. Essentially, our channel model passes a sliding window of length \(\ell\) over a \(q\)-ary input sequence that outputs the \textit{composition} of the enclosed \(\ell\) bits and shifts by \(\delta\) positions with each time step. In this context, the composition of a \(q\)-ary vector $\bfx$ specifies the number of occurrences in \(\bfx\) of each symbol in \(\lbrace 0,1,\ldots, q-1\rbrace\). The resulting compositions vector, termed the \emph{read vector}, may also be corrupted by \(t\) substitution errors. By employing graph-theoretic techniques, we deduce that for \(\delta=1\), at least \(\log \log n\) symbols of redundancy are required to correct a single (\(t=1\)) substitution. Finally, for \(\ell \geq 3\), we exploit some inherent characteristics of read vectors to arrive at an error-correcting code that is of optimal redundancy up to a (small) additive constant for this setting. This construction is also found to be optimal for the case of reconstruction from two noisy read vectors.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员