This paper describes Infosys's participation in the "2nd Social Media Mining for Health Applications Shared Task at AMIA, 2017, Task 2". Mining social media messages for health and drug related information has received significant interest in pharmacovigilance research. This task targets at developing automated classification models for identifying tweets containing descriptions of personal intake of medicines. Towards this objective we train a stacked ensemble of shallow convolutional neural network (CNN) models on an annotated dataset provided by the organizers. We use random search for tuning the hyper-parameters of the CNN and submit an ensemble of best models for the prediction task. Our system secured first place among 9 teams, with a micro-averaged F-score of 0.693.


翻译:本文介绍Infosys参与“2017年美洲医学协会健康应用第二社会媒体采矿共同任务”的工作。 有关健康和药物相关信息的采矿社会媒体信息在药物监督研究中受到极大关注。这一任务旨在开发自动分类模式,以识别含有个人药物摄入情况说明的推文。为此,我们根据组织者提供的附加说明的数据集,对一组浅层神经神经网络(CNN)模型进行了堆叠式培训。我们利用随机搜索来调整CNN的超参数,并为预测任务提供一套最佳模型。我们的系统在9个团队中占据第一位,拥有0.693个微平均值F分。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
165+阅读 · 2020年6月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
165+阅读 · 2020年6月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员