Hyperspectral image (HSI) denoising is a crucial preprocessing procedure for the subsequent HSI applications. Unfortunately, though witnessing the development of deep learning in HSI denoising area, existing convolution-based methods face the trade-off between computational efficiency and capability to model non-local characteristics of HSI. In this paper, we propose a Spatial-Spectral Transformer (SST) to alleviate this problem. To fully explore intrinsic similarity characteristics in both spatial dimension and spectral dimension, we conduct non-local spatial self-attention and global spectral self-attention with Transformer architecture. The window-based spatial self-attention focuses on the spatial similarity beyond the neighboring region. While, spectral self-attention exploits the long-range dependencies between highly correlative bands. Experimental results show that our proposed method outperforms the state-of-the-art HSI denoising methods in quantitative quality and visual results.
翻译:高光谱图解密是随后的高光谱应用的一个重要预处理程序,不幸的是,虽然目睹了高光谱分解区深层学习的发展,但现有的基于革命的方法在计算效率和模型构建高光谱分解非本地特性的能力之间面临着权衡。在本文件中,我们提议建立一个空间分光变异器(SST)来缓解这一问题。为了充分探索空间层面和光谱层面的内在相似性特征,我们与变异器结构进行非局部空间自留和全球光谱自留。以窗口为基础的空间自留侧重于相邻区域以外的空间相似性。虽然光谱自留利用高度相关波段之间的长期依赖性。实验结果表明,我们所提议的方法在数量质量和视觉结果方面超越了最新的高光谱光谱分解方法。