Although Large Language Models (LLMs) show promising solutions to automated code generation, they often produce insecure code that threatens software security. Current approaches (e.g., SafeCoder) to improve secure code generation suffer from limited and imbalanced datasets, reducing their effectiveness and generalizability. In this work, we present Secure-Instruct, a novel framework that automatically synthesizes high-quality vulnerable and secure code examples, generates fine-tuning instructions, and instruction-tunes LLMs to align task description and secure code generation abilities. We evaluate Secure-Instruct on four representative LLMs using two benchmarks: our own CWEBench and the existing CWEval. CWEBench comprises 93 scenarios on 44 CWEs, all without overlap with Secure-Instruct's synthetic instruction-tuning dataset, while CWEval covers 31 CWEs with 119 manually verified security-critical tasks. We find that Secure-Instruct improves not only the security but also the functional correctness of the generated code. On CWEBench, Secure-Instruct substantially improves secure code generation, giving a 14.3% average increase in secure ratio over the pretrained models and outperforms SafeCoder by 7.6%. On CWEval, Secure-Instruct achieves a 14% increase for CodeLlama-7B and 5.8% for Mistral-7B in Func-Sec@1 over pretrained models, and surpasses SafeCoder by 15.8% and 6.8% respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2019年3月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员