Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, structural brain changes, and genetic predispositions. This study leverages machine-learning and statistical techniques to investigate the mechanistic relationships between cognitive function, genetic markers, and neuroimaging biomarkers in AD progression. Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we perform both low-dimensional and high-dimensional analyses to identify key predictors of disease states, including cognitively normal (CN), mild cognitive impairment (MCI), and AD. Our low-dimensional approach utilizes multiple linear and ordinal logistic regression to examine the influence of cognitive scores, cerebrospinal fluid (CSF) biomarkers, and demographic factors on disease classification. The results highlight significant associations between Mini-Mental State Examination (MMSE), Clinical Dementia Rating Sum of Boxes (CDRSB), and phosphorylated tau levels in predicting cognitive decline. The high-dimensional analysis employs Sure Independence Screening (SIS) and LASSO regression to reduce dimensionality and identify genetic markers correlated with cognitive impairment and white matter integrity. Genes such as CLIC1, NAB2, and TGFBR1 emerge as significant predictors across multiple analyses, linking genetic expression to neurodegeneration. Additionally, imaging genetic analysis reveals shared genetic influences across brain hemispheres and the corpus callosum, suggesting distinct genetic contributions to white matter degradation. These findings enhance our understanding of AD pathology by integrating cognitive, genetic, and imaging data. Future research should explore longitudinal analyses and potential gene-environment interactions to further elucidate the biological mechanisms underlying AD progression.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
43+阅读 · 2024年1月25日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
13+阅读 · 2021年5月25日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员