Anomaly detection suffers from unbalanced data since anomalies are quite rare. Synthetically generated anomalies are a solution to such ill or not fully defined data. However, synthesis requires an expressive representation to guarantee the quality of the generated data. In this paper, we propose a two-level hierarchical latent space representation that distills inliers' feature-descriptors (through autoencoders) into more robust representations based on a variational family of distributions (through a variational autoencoder) for zero-shot anomaly generation. From the learned latent distributions, we select those that lie on the outskirts of the training data as synthetic-outlier generators. And, we synthesize from them, i.e., generate negative samples without seen them before, to train binary classifiers. We found that the use of the proposed hierarchical structure for feature distillation and fusion creates robust and general representations that allow us to synthesize pseudo outlier samples. And in turn, train robust binary classifiers for true outlier detection (without the need for actual outliers during training). We demonstrate the performance of our proposal on several benchmarks for anomaly detection.


翻译:异常现象的检测存在不平衡的数据,因为异常现象是相当罕见的。 合成产生的异常现象是解决此类弊病的办法,或者没有完全界定的数据。 然而,合成需要一种清晰的表达方式,以保证生成的数据的质量。 在本文中,我们提议了一种两级的潜潜伏空间代表方式,通过自动解码器将隐性描述器(通过自动解析器)蒸馏成以零发异常生成的分布式变式组合(通过变式自动解码器)为基础的更稳健的表达方式。我们从所学的隐性分布方式中选择培训数据外围的异常现象作为合成外源生成器。我们从中合成了负面的样本,也就是说,我们从中生成了未见的样本,以培训二进式分类器。我们发现,使用拟议中的分级结构进行特征蒸馏和聚合,可以产生有力和普遍的表达方式,从而使我们能够合成假外源样本。反过来,为真实的异常现象的检测而培训强有力的二进级分类器(不需要实际的外源值 ) 。 我们演示了我们关于异常检测的若干基准的绩效。

0
下载
关闭预览

相关内容

【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月5日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员