We show that linearly constrained linear optimization over a Stiefel or Grassmann manifold is NP-hard in general. We show that the same is true for unconstrained quadratic optimization over a Stiefel manifold. We will show that unless $\mathrm{P}=\mathrm{NP}$, these optimization problems over a Stiefel manifold do not have $\mathrm{FPTAS}$. As an aside we extend our results to flag manifolds. Combined with earlier findings, this shows that manifold optimization is a difficult endeavor -- even the simplest problems like LP and unconstrained QP are already NP-hard on the most common manifolds.


翻译:我们证明,在一般情况下,Stiefel流形或Grassmann流形上的线性约束线性优化是NP难的。我们还证明,Stiefel流形上的无约束二次优化同样具有NP难度。我们将证明,除非$\mathrm{P}=\mathrm{NP}$,否则这些Stiefel流形上的优化问题不存在$\mathrm{FPTAS}$。作为补充,我们将结果推广到旗流形。结合先前的研究成果,这表明流形优化是一项困难的任务——即使在最常用的流形上,像线性规划(LP)和无约束二次规划(QP)这样最简单的问题也已经是NP难的。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员