This work proposes a simple yet effective sampling framework for combinatorial optimization (CO). Our method builds on discrete Langevin dynamics (LD), an efficient gradient-guided generative paradigm. However, we observe that directly applying LD often leads to limited exploration. To overcome this limitation, we propose the Regularized Langevin Dynamics (RLD), which enforces an expected distance between the sampled and current solutions, effectively avoiding local minima. We develop two CO solvers on top of RLD, one based on simulated annealing (SA), and the other one based on neural network (NN). Empirical results on three classic CO problems demonstrate that both of our methods can achieve comparable or better performance against the previous state-of-the-art (SOTA) SA- and NN-based solvers. In particular, our SA algorithm reduces the runtime of the previous SOTA SA method by up to 80\%, while achieving equal or superior performance. In summary, RLD offers a promising framework for enhancing both traditional heuristics and NN models to solve CO problems. Our code is available at https://github.com/Shengyu-Feng/RLD4CO.
翻译:本研究提出了一种简单而有效的组合优化(CO)采样框架。我们的方法建立在离散朗之万动力学(LD)的基础上,这是一种高效的梯度引导生成范式。然而,我们观察到直接应用LD往往导致探索能力有限。为克服这一局限,我们提出了正则化朗之万动力学(RLD),该方法强制要求采样解与当前解之间保持期望距离,从而有效避免局部极小值。我们在RLD基础上开发了两种CO求解器:一种基于模拟退火(SA),另一种基于神经网络(NN)。在三个经典CO问题上的实验结果表明,我们的两种方法相较于之前基于SA和NN的先进(SOTA)求解器,均能取得相当或更优的性能。特别值得注意的是,我们的SA算法在保持同等或更优性能的同时,将先前SOTA SA方法的运行时间降低了高达80%。总而言之,RLD为增强传统启发式方法和NN模型以解决CO问题提供了一个前景广阔的框架。我们的代码公开于 https://github.com/Shengyu-Feng/RLD4CO。