We revisit the classical causal inference problem of estimating the average treatment effect in the presence of fully observed confounding variables using two-stage semiparametric methods. In existing theoretical studies of methods such as G-computation, inverse propensity weighting (IPW), and two common doubly robust estimators -- augmented IPW (AIPW) and targeted maximum likelihood estimation (TMLE) -- they are either bias-dominated, or have similar asymptotic statistical properties. However, when applied to real datasets, they often appear to have notably different variance. We compare these methods when using a machine learning (ML) model to estimate the nuisance parameters of the semiparametric model, and highlight some of the important differences. When the outcome model estimates have little bias, which is common among some key ML models, G-computation and the TMLE outperforms the other estimators in both bias and variance. We show that the differences can be explained using high-dimensional statistical theory, where the number of confounders $d$ is of the same order as the sample size $n$. To make this theoretical problem tractable, we posit a generalized linear model for the effect of the confounders on the treatment assignment and outcomes. Despite making parametric assumptions, this setting is a useful surrogate for some machine learning methods used to adjust for confounding in two-stage semiparametric methods. In particular, the estimation of the first stage adds variance that does not vanish, forcing us to confront terms in the asymptotic expansion that normally are brushed aside as finite sample defects. However, our model emphasizes differences in performance between these estimators beyond first-order asymptotics.


翻译:我们重新审视了在充分观察到的分解变量存在的情况下估计平均处理效果的典型因果推论问题。在使用两阶段半参数方法来评估平均处理效果时,我们用两阶段半参数模型来比较这些方法。在对G-计算、反偏向加权(IPW)等方法的现有理论研究中,以及两个共同的双倍强估测器 -- -- 强化了IPW(AIPW)和有针对性的最大概率估算(TMLE) -- -- 它们要么是偏差主导,要么是类似的偏差统计属性。但是,在应用真实数据集时,它们似乎往往有显著的差异。在使用机器学习模型(MLM)模型时,我们比较这些方法的方法,在使用机器学习模型(MLM)模型(ML)模型(MLM)模型(ML)模型来估计半参数的偏差参数,并突出一些重要的差异。当结果模型(G-IPF)估计结果时,G-C-G-C和TML(TML)通常的偏差比其他估测算方法。我们使用的这些模型可以用高度估算值来解释差异。在高估测算的模型中可以解释差异上,我们比较的值数字的值数字的数值数是第一个阶段的排序,对于测算法,通常是用来测测测测测算。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员