Recent advances in zero-shot text-to-speech (TTS), driven by language models, diffusion models and masked generation, have achieved impressive naturalness in speech synthesis. Nevertheless, stability and fidelity remain key challenges, manifesting as mispronunciations, audible noise, and quality degradation. To address these issues, we introduce Vox-Evaluator, a multi-level evaluator designed to guide the correction of erroneous speech segments and preference alignment for TTS systems. It is capable of identifying the temporal boundaries of erroneous segments and providing a holistic quality assessment of the generated speech. Specifically, to refine erroneous segments and enhance the robustness of the zero-shot TTS model, we propose to automatically identify acoustic errors with the evaluator, mask the erroneous segments, and finally regenerate speech conditioning on the correct portions. In addition, the fine-gained information obtained from Vox-Evaluator can guide the preference alignment for TTS model, thereby reducing the bad cases in speech synthesis. Due to the lack of suitable training datasets for the Vox-Evaluator, we also constructed a synthesized text-speech dataset annotated with fine-grained pronunciation errors or audio quality issues. The experimental results demonstrate the effectiveness of the proposed Vox-Evaluator in enhancing the stability and fidelity of TTS systems through the speech correction mechanism and preference optimization. The demos are shown.


翻译:近年来,由语言模型、扩散模型和掩码生成技术驱动的零样本文本到语音(TTS)系统在语音合成的自然度方面取得了显著进展。然而,稳定性和保真度仍然是关键挑战,具体表现为发音错误、可闻噪声和音质下降。为解决这些问题,我们提出了Vox-Evaluator,一个多层级评估器,旨在指导TTS系统纠正错误语音片段并进行偏好对齐。它能够识别错误片段的时间边界,并对生成的语音提供整体质量评估。具体而言,为精炼错误片段并增强零样本TTS模型的鲁棒性,我们提出利用该评估器自动识别声学错误,掩码错误片段,并最终基于正确部分重新生成语音。此外,从Vox-Evaluator获得的细粒度信息可以指导TTS模型的偏好对齐,从而减少语音合成中的不良案例。由于缺乏适用于Vox-Evaluator的训练数据集,我们还构建了一个合成文本-语音数据集,其中标注了细粒度的发音错误或音频质量问题。实验结果表明,所提出的Vox-Evaluator通过语音纠正机制和偏好优化,有效提升了TTS系统的稳定性和保真度。演示样例已展示。

0
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员