Kernel Density Estimation (KDE) is a cornerstone of nonparametric statistics, yet it remains sensitive to bandwidth choice, boundary bias, and computational inefficiency. This study revisits KDE through a principled convolutional framework, providing an intuitive model-based derivation that naturally extends to constrained domains, such as positive-valued random variables. Building on this perspective, we introduce SHIDE (Simulation and Histogram Interpolation for Density Estimation), a novel and computationally efficient density estimator that generates pseudo-data by adding bounded noise to observations and applies spline interpolation to the resulting histogram. The noise is sampled from a class of bounded polynomial kernel densities, constructed through convolutions of uniform distributions, with a natural bandwidth parameter defined by the kernel's support bound. We establish the theoretical properties of SHIDE, including pointwise consistency, bias-variance decomposition, and asymptotic MISE, showing that SHIDE attains the classical $n^{-4/5}$ convergence rate while mitigating boundary bias. Two data-driven bandwidth selection methods are developed, an AMISE-optimal rule and a percentile-based alternative, which are shown to be asymptotically equivalent. Extensive simulations demonstrate that SHIDE performs comparably to or surpasses KDE across a broad range of models, with particular advantages for bounded and heavy-tailed distributions. These results highlight SHIDE as a theoretically grounded and practically robust alternative to traditional KDE.
翻译:核密度估计(KDE)是非参数统计学的基石,但其对带宽选择、边界偏差及计算效率依然敏感。本研究通过一个原理性的卷积框架重新审视KDE,提出了一种基于模型的直观推导方法,该方法可自然地扩展到约束域(如正值随机变量)。基于这一视角,我们提出了SHIDE(用于密度估计的模拟与直方图插值法),这是一种新颖且计算高效的密度估计器:通过对观测值添加有界噪声生成伪数据,并对所得直方图应用样条插值。噪声采样自一类有界多项式核密度函数,该函数通过均匀分布的卷积构建,其自然带宽参数由核的支撑界定义。我们建立了SHIDE的理论性质,包括逐点一致性、偏差-方差分解和渐近MISE,证明SHIDE在缓解边界偏差的同时达到了经典的$n^{-4/5}$收敛速率。本文提出了两种数据驱动的带宽选择方法——AMISE最优准则与基于百分位数的替代方法,并证明二者具有渐近等价性。大量仿真实验表明,SHIDE在广泛的模型范围内表现与KDE相当或更优,在处理有界分布和厚尾分布时具有显著优势。这些结果凸显了SHIDE作为传统KDE的一种理论坚实且实践稳健的替代方案。