Quantum learning from remotely accessed quantum compute and data must address two key challenges: verifying the correctness of data and ensuring the privacy of the learner's data-collection strategies and resulting conclusions. The covert (verifiable) learning model of Canetti and Karchmer (TCC 2021) provides a framework for endowing classical learning algorithms with such guarantees. In this work, we propose models of covert verifiable learning in quantum learning theory and realize them without computational hardness assumptions for remote data access scenarios motivated by established quantum data advantages. We consider two privacy notions: (i) strategy-covertness, where the eavesdropper does not gain information about the learner's strategy; and (ii) target-covertness, where the eavesdropper does not gain information about the unknown object being learned. We show: Strategy-covert algorithms for making quantum statistical queries via classical shadows; Target-covert algorithms for learning quadratic functions from public quantum examples and private quantum statistical queries, for Pauli shadow tomography and stabilizer state learning from public multi-copy and private single-copy quantum measurements, and for solving Forrelation and Simon's problem from public quantum queries and private classical queries, where the adversary is a unidirectional or i.i.d. ancilla-free eavesdropper. The lattermost results in particular establish that the exponential separation between classical and quantum queries for Forrelation and Simon's problem survives under covertness constraints. Along the way, we design covert verifiable protocols for quantum data acquisition from public quantum queries which may be of independent interest. Overall, our models and corresponding algorithms demonstrate that quantum advantages are privately and verifiably achievable even with untrusted, remote data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员