In recent years, diffusion-based models have demonstrated exceptional performance in searching for simultaneously stable, unique, and novel (S.U.N.) crystalline materials. However, most of these models don't have the ability to change the number of atoms in the crystal during the generation process, which limits the variability of model sampling trajectories. In this paper, we demonstrate the severity of this restriction and introduce a simple yet powerful technique, mirage infusion, which enables diffusion models to change the state of the atoms that make up the crystal from existent to non-existent (mirage) and vice versa. We show that this technique improves model quality by up to $\times2.5$ compared to the same model without this modification. The resulting model, Mirage Atom Diffusion (MiAD), is an equivariant joint diffusion model for de novo crystal generation that is capable of altering the number of atoms during the generation process. MiAD achieves an $8.2\%$ S.U.N. rate on the MP-20 dataset, which substantially exceeds existing state-of-the-art approaches. The source code can be found at \href{https://github.com/andrey-okhotin/miad.git}{\texttt{github.com/andrey-okhotin/miad}}.


翻译:近年来,基于扩散的模型在同时寻找稳定、独特且新颖(S.U.N.)的晶体材料方面展现出卓越性能。然而,大多数此类模型在生成过程中无法改变晶体中的原子数量,这限制了模型采样轨迹的多样性。本文中,我们论证了这一限制的严重性,并提出了一种简单而强大的技术——幻影注入,该技术使扩散模型能够将构成晶体的原子状态从存在转变为不存在(幻影),反之亦然。研究表明,与未进行此修改的相同模型相比,该技术将模型质量提升至最高$\\times2.5$倍。由此产生的模型——幻影原子扩散(MiAD),是一种用于从头晶体生成的等变联合扩散模型,能够在生成过程中改变原子数量。MiAD在MP-20数据集上实现了$8.2\\%$的S.U.N.率,显著超越了现有最先进方法。源代码可在\\href{https://github.com/andrey-okhotin/miad.git}{\\texttt{github.com/andrey-okhotin/miad}}获取。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员