We present a numerical framework for the simulation of collisional plasma dynamics, based on a coupling between Direct Simulation Monte Carlo (DSMC) and Particle-in-Cell (PIC) methods for the Vlasov-Maxwell-Landau system. The approach extends previously developed DSMC techniques for the homogeneous Landau equation to the fully inhomogeneous, electromagnetic regime. The Landau collision operator is treated through a stochastic particle formulation inspired by the grazing-collision limit of the Boltzmann equation, which enables an efficient and physically consistent representation of Coulomb interactions without relying on the full Boltzmann structure. The resulting collisional solver is combined, via operator splitting, with standard PIC schemes for the Vlasov-Maxwell dynamics, providing flexibility in the choice of field discretisation and time integration. The overall method preserves the main physical invariants of the system while maintaining computational efficiency and simplicity of implementation. Numerical experiments on benchmark problems demonstrate the accuracy, robustness, and effectiveness of the coupled DSMC-PIC approach across a wide range of collisional regimes.


翻译:本文提出了一种基于直接模拟蒙特卡洛(DSMC)方法与粒子网格(PIC)方法耦合的数值框架,用于模拟碰撞等离子体动力学,适用于 Vlasov-Maxwell-Landau 系统。该方法将先前针对均匀 Landau 方程开发的 DSMC 技术推广至完全非均匀的电磁情形。Landau 碰撞算子通过一种受玻尔兹曼方程小角度碰撞极限启发的随机粒子公式进行处理,从而能够在无需依赖完整玻尔兹曼结构的前提下,实现对库仑相互作用的高效且物理一致的描述。通过算子分裂法,将所得的碰撞求解器与用于 Vlasov-Maxwell 动力学的标准 PIC 方案相结合,这为场离散化和时间积分方案的选择提供了灵活性。整体方法在保持计算效率和实现简洁性的同时,保留了系统的主要物理不变量。在基准问题上的数值实验表明,耦合的 DSMC-PIC 方法在广泛的碰撞区间内均具有准确性、鲁棒性和有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员