Machine learning is widely used for malware detection in practice. Prior behavior-based detectors most commonly rely on traces of programs executed in controlled sandboxes. However, sandbox traces are unavailable to the last line of defense offered by security vendors: malware detection at endpoints. A detector at endpoints consumes the traces of programs running on real-world hosts, as sandbox analysis might introduce intolerable delays. Despite their success in the sandboxes, research hints at potential challenges for ML methods at endpoints, e.g., highly variable malware behaviors. Nonetheless, the impact of these challenges on existing approaches and how their excellent sandbox performance translates to the endpoint scenario remain unquantified. We present the first measurement study of the performance of ML-based malware detectors at real-world endpoints. Leveraging a dataset of sandbox traces and a dataset of in-the-wild program traces; we evaluate two scenarios where the endpoint detector was trained on (i) sandbox traces (convenient and accessible); and (ii) endpoint traces (less accessible due to needing to collect telemetry data). This allows us to identify a wide gap between prior methods' sandbox-based detection performance--over 90%--and endpoint performances--below 20% and 50% in (i) and (ii), respectively. We pinpoint and characterize the challenges contributing to this gap, such as label noise, behavior variability, or sandbox evasion. To close this gap, we propose that yield a relative improvement of 5-30% over the baselines. Our evidence suggests that applying detectors trained on sandbox data to endpoint detection -- scenario (i) -- is challenging. The most promising direction is training detectors on endpoint data -- scenario (ii) -- which marks a departure from widespread practice. We implement a leaderboard for realistic detector evaluations to promote research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2022年10月20日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
13+阅读 · 2022年10月20日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员