Serverless computing (FaaS) has been extensively utilized for deep learning (DL) inference due to the ease of deployment and pay-per-use benefits. However, existing FaaS platforms utilize GPUs in a coarse manner for DL inferences, without taking into account spatio-temporal resource multiplexing and isolation, which results in severe GPU under-utilization, high usage expenses, and SLO (Service Level Objectives) violation. There is an imperative need to enable an efficient and SLO-aware GPU-sharing mechanism in serverless computing to facilitate cost-effective DL inferences. In this paper, we propose \textbf{FaST-GShare}, an efficient \textit{\textbf{Fa}aS-oriented \textbf{S}patio-\textbf{T}emporal \textbf{G}PU \textbf{Sharing}} architecture for deep learning inferences. In the architecture, we introduce the FaST-Manager to limit and isolate spatio-temporal resources for GPU multiplexing. In order to realize function performance, the automatic and flexible FaST-Profiler is proposed to profile function throughput under various resource allocations. Based on the profiling data and the isolation mechanism, we introduce the FaST-Scheduler with heuristic auto-scaling and efficient resource allocation to guarantee function SLOs. Meanwhile, FaST-Scheduler schedules function with efficient GPU node selection to maximize GPU usage. Furthermore, model sharing is exploited to mitigate memory contention. Our prototype implementation on the OpenFaaS platform and experiments on MLPerf-based benchmark prove that FaST-GShare can ensure resource isolation and function SLOs. Compared to the time sharing mechanism, FaST-GShare can improve throughput by 3.15x, GPU utilization by 1.34x, and SM (Streaming Multiprocessor) occupancy by 3.13x on average.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员