We consider the problem of online adaptive control of the linear quadratic regulator, where the true system parameters are unknown. We prove new upper and lower bounds demonstrating that the optimal regret scales as $\widetilde{\Theta}({\sqrt{d_{\mathbf{u}}^2 d_{\mathbf{x}} T}})$, where $T$ is the number of time steps, $d_{\mathbf{u}}$ is the dimension of the input space, and $d_{\mathbf{x}}$ is the dimension of the system state. Notably, our lower bounds rule out the possibility of a $\mathrm{poly}(\log{}T)$-regret algorithm, which had been conjectured due to the apparent strong convexity of the problem. Our upper bound is attained by a simple variant of $\textit{{certainty equivalent control}}$, where the learner selects control inputs according to the optimal controller for their estimate of the system while injecting exploratory random noise. While this approach was shown to achieve $\sqrt{T}$-regret by (Mania et al. 2019), we show that if the learner continually refines their estimates of the system matrices, the method attains optimal dimension dependence as well. Central to our upper and lower bounds is a new approach for controlling perturbations of Riccati equations called the $\textit{self-bounding ODE method}$, which we use to derive suboptimality bounds for the certainty equivalent controller synthesized from estimated system dynamics. This in turn enables regret upper bounds which hold for $\textit{any stabilizable instance}$ and scale with natural control-theoretic quantities.


翻译:我们考虑的是线形二次调节器在线适应控制的问题, 真正的系统参数未知。 我们证明新的上下界限, 表明最优的遗憾比例值为 $\ 宽度( 全程) {d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\T} (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\T\\\\\\\\\\\\\\\\\\\\\\\\\\\\\T\\\\\\\\\\\\\\\\\\\\\\\\\\美元, 美元, 美元, 美元, 美元, 美元是输入系统的最佳控制范围。 校正正正正序(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员