Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.

3
下载
关闭预览

相关内容

最优化是应用数学的一个分支,主要指在一定条件限制下,选取某种研究方案使目标达到最优的一种方法。最优化问题在当今的军事、工程、管理等领域有着极其广泛的应用。

A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.

0
7
下载
预览

Few-shot Learning aims to learn classifiers for new classes with only a few training examples per class. Existing meta-learning or metric-learning based few-shot learning approaches are limited in handling diverse domains with various number of labels. The meta-learning approaches train a meta learner to predict weights of homogeneous-structured task-specific networks, requiring a uniform number of classes across tasks. The metric-learning approaches learn one task-invariant metric for all the tasks, and they fail if the tasks diverge. We propose to deal with these limitations with meta metric learning. Our meta metric learning approach consists of task-specific learners, that exploit metric learning to handle flexible labels, and a meta learner, that discovers good parameters and gradient decent to specify the metrics in task-specific learners. Thus the proposed model is able to handle unbalanced classes as well as to generate task-specific metrics. We test our approach in the `$k$-shot $N$-way' few-shot learning setting used in previous work and new realistic few-shot setting with diverse multi-domain tasks and flexible label numbers. Experiments show that our approach attains superior performances in both settings.

0
12
下载
预览

Deep reinforcement learning (RL) has achieved many recent successes, yet experiment turn-around time remains a key bottleneck in research and in practice. We investigate how to optimize existing deep RL algorithms for modern computers, specifically for a combination of CPUs and GPUs. We confirm that both policy gradient and Q-value learning algorithms can be adapted to learn using many parallel simulator instances. We further find it possible to train using batch sizes considerably larger than are standard, without negatively affecting sample complexity or final performance. We leverage these facts to build a unified framework for parallelization that dramatically hastens experiments in both classes of algorithm. All neural network computations use GPUs, accelerating both data collection and training. Our results include using an entire DGX-1 to learn successful strategies in Atari games in mere minutes, using both synchronous and asynchronous algorithms.

0
5
下载
预览

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

0
3
下载
预览

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

0
3
下载
预览

Gradient-based meta-learning techniques are both widely applicable and proficient at solving challenging few-shot learning and fast adaptation problems. However, they have the practical difficulties of operating in high-dimensional parameter spaces in extreme low-data regimes. We show that it is possible to bypass these limitations by learning a low-dimensional latent generative representation of model parameters and performing gradient-based meta-learning in this space with latent embedding optimization (LEO), effectively decoupling the gradient-based adaptation procedure from the underlying high-dimensional space of model parameters. Our evaluation shows that LEO can achieve state-of-the-art performance on the competitive 5-way 1-shot miniImageNet classification task.

0
6
下载
预览

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

0
7
下载
预览

A major goal of unsupervised learning is to discover data representations that are useful for subsequent tasks, without access to supervised labels during training. Typically, this goal is approached by minimizing a surrogate objective, such as the negative log likelihood of a generative model, with the hope that representations useful for subsequent tasks will arise incidentally. In this work, we propose instead to directly target a later desired task by meta-learning an unsupervised learning rule, which leads to representations useful for that task. Here, our desired task (meta-objective) is the performance of the representation on semi-supervised classification, and we meta-learn an algorithm -- an unsupervised weight update rule -- that produces representations that perform well under this meta-objective. Additionally, we constrain our unsupervised update rule to a be a biologically-motivated, neuron-local function, which enables it to generalize to novel neural network architectures. We show that the meta-learned update rule produces useful features and sometimes outperforms existing unsupervised learning techniques. We further show that the meta-learned unsupervised update rule generalizes to train networks with different widths, depths, and nonlinearities. It also generalizes to train on data with randomly permuted input dimensions and even generalizes from image datasets to a text task.

0
7
下载
预览

Clustering and classification critically rely on distance metrics that provide meaningful comparisons between data points. We present mixed-integer optimization approaches to find optimal distance metrics that generalize the Mahalanobis metric extensively studied in the literature. Additionally, we generalize and improve upon leading methods by removing reliance on pre-designated "target neighbors," "triplets," and "similarity pairs." Another salient feature of our method is its ability to enable active learning by recommending precise regions to sample after an optimal metric is computed to improve classification performance. This targeted acquisition can significantly reduce computational burden by ensuring training data completeness, representativeness, and economy. We demonstrate classification and computational performance of the algorithms through several simple and intuitive examples, followed by results on real image and medical datasets.

0
8
下载
预览

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

1
5
下载
预览
小贴士
相关论文
Meta-Learning with Implicit Gradients
Aravind Rajeswaran,Chelsea Finn,Sham Kakade,Sergey Levine
7+阅读 · 2019年9月10日
Yu Cheng,Mo Yu,Xiaoxiao Guo,Bowen Zhou
12+阅读 · 2019年1月26日
Accelerated Methods for Deep Reinforcement Learning
Adam Stooke,Pieter Abbeel
5+阅读 · 2019年1月10日
Maria-Florina Balcan,Yi Li,David P. Woodruff,Hongyang Zhang
3+阅读 · 2018年10月18日
Brendan O'Donoghue
3+阅读 · 2018年7月25日
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu,Dushyant Rao,Jakub Sygnowski,Oriol Vinyals,Razvan Pascanu,Simon Osindero,Raia Hadsell
6+阅读 · 2018年7月16日
Kevin Scaman,Francis Bach,Sébastien Bubeck,Yin Tat Lee,Laurent Massoulié
7+阅读 · 2018年6月1日
Luke Metz,Niru Maheswaranathan,Brian Cheung,Jascha Sohl-Dickstein
7+阅读 · 2018年5月23日
Krishnan Kumaran,Dimitri Papageorgiou,Yutong Chang,Minhan Li,Martin Takáč
8+阅读 · 2018年3月28日
John Duchi,Hongseok Namkoong
5+阅读 · 2017年12月14日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
22+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
RL 真经
CreateAMind
4+阅读 · 2018年12月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
6+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top