Deep kernel learning (DKL) and related techniques aim to combine the representational power of neural networks with the reliable uncertainty estimates of Gaussian processes. One crucial aspect of these models is an expectation that, because they are treated as Gaussian process models optimized using the marginal likelihood, they are protected from overfitting. However, we identify situations where this is not the case. We explore this behavior, explain its origins and consider how it applies to real datasets. Through careful experimentation on the UCI, CIFAR-10, and the UTKFace datasets, we find that the overfitting from overparameterized maximum marginal likelihood, in which the model is "somewhat Bayesian", can in certain scenarios be worse than that from not being Bayesian at all. We explain how and when DKL can still be successful by investigating optimization dynamics. We also find that failures of DKL can be rectified by a fully Bayesian treatment, which leads to the desired performance improvements over standard neural networks and Gaussian processes.


翻译:深心学习( DKL) 及相关技术旨在将神经网络的表示力与Gaussian 进程的可靠不确定性估计值结合起来。 这些模型的一个重要方面是预期, 因为这些模型被视作使用边际可能性优化的Gaussian 进程模型, 保护它们不被过度适应。 然而, 我们发现情况并非如此。 我们探索了这一行为, 解释其起源, 并考虑它如何适用于真实的数据集。 通过对 UCI、 CIFAR- 10 和 UTKFace 数据集的仔细实验, 我们发现, 过度利用过度量化的最大边际可能性( 其中模型是“ 某种巴伊西亚人 ” ), 在某些情景下, 可能比非巴伊西亚人更糟糕。 我们解释 DKL 如何以及何时仍然能够通过调查优化动态来成功。 我们还发现, DKL 的失败可以通过完全的巴伊西亚处理来纠正, 从而导致标准神经网络和高斯进程预期的性能改善。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
14+阅读 · 2020年12月17日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
64+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
14+阅读 · 2020年12月17日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员